Futuristic Circuits Concept

Fabricating nanoelectronic circuits of the long run simply received much more fascinating, due to DNA origami.

The hunt for ever-smaller digital parts led a global group of researchers to discover utilizing molecular constructing blocks to create them. DNA is ready to self-assemble into arbitrary buildings, however the problem with utilizing these buildings for nanoelectronic circuits is the DNA strands have to be transformed into extremely conductive wires.

Impressed by earlier works utilizing the DNA molecule as a template for superconducting nanowires, the group took benefit of a latest bioengineering advance referred to as DNA origami to fold DNA into arbitrary shapes.

In AIP Advances, from AIP Publishing, researchers from Bar-Ilan College, Ludwig-Maximilians-Universität München, Columbia College, and Brookhaven Nationwide Laboratory describe how one can exploit DNA origami as a platform to construct superconducting nanoarchitectures. The buildings they constructed are addressable with nanometric precision that can be utilized as a template for 3D architectures that aren’t attainable at this time through standard fabrication strategies.

DNA Origami Wires

Utilizing DNA origami as a platform to construct superconducting nanoarchitectures. Transmission electron microscopy (TEM) picture of DNA origami wires earlier than the coating. Credit score: Lior Shani, Philip Tinnefeld, Yafit Fleger, Amos Sharoni, Boris Shapiro, Avner Shaulov, Oleg Gang, and Yosef Yeshurun

The group’s fabrication course of includes a multidisciplinary method, specifically the conversion of the DNA origami nanostructures into superconducting parts. And the preparation means of DNA origami nanostructures includes two main parts: a round single-strand DNA because the scaffold, and a mixture of complementary brief strands appearing as staples that decide the form of the construction.

“In our case, the construction is an roughly 220-nanometer-long and 15-nanometer-wide DNA origami wire,” mentioned Lior Shani, of Bar-Ilan College in Israel. “We dropcast the DNA nanowires onto a substrate with a channel and coat them with superconducting niobium nitride. Then we droop the nanowires over the channel to isolate them from the substrate in the course of the electrical measurements.”

The group’s work reveals how one can exploit the DNA origami approach to manufacture superconducting parts that may be integrated into a variety of architectures.

Niobium Nitrate-Coated DNA Nanowire

Utilizing DNA origami as a platform to construct superconducting nanoarchitectures. (left) Schematic illustration of a niobium nitrate-coated DNA nanowire suspended above a silicon nitride/silicon oxide channel. (proper) Excessive-resolution scanning electron microscope (HR-SEM) picture of the channel (black in picture) on which the DNA nanowire is suspended. Within the picture, the channel seems discontinuous, reflecting the DNA suspended throughout it (marked by dashed orange rectangle). The space between the 2 sides of the channel is ~50 nanometers, and the width of the niobium nitrate-coated nanowire at its narrowest level is ~25 nanometers. Credit score: Lior Shani, Philip Tinnefeld, Yafit Fleger, Amos Sharoni, Boris Shapiro, Avner Shaulov, Oleg Gang, and Yosef Yeshurun

“Superconductors are recognized for working an electrical present circulation with out dissipations,” mentioned Shani. “However superconducting wires with nanometric dimensions give rise to quantum fluctuations that destroy the superconducting state, which leads to the looks of resistance at low temperatures.”

By utilizing a excessive magnetic area, the group suppressed these fluctuations and diminished about 90% of the resistance.

“Which means our work can be utilized in functions like interconnects for nanoelectronics and novel gadgets based mostly on exploitation of the pliability of DNA origami in fabrication of 3D superconducting architectures, akin to 3D magnetometers,” mentioned Shani.

Reference: “DNA origami based mostly superconducting nanowires” by Lior Shani, Philip Tinnefeld, Yafit Fleger, Amos Sharoni, Boris Ya. Shapiro, Avner Shaulov, Oleg Gang and Yosef Yeshurun, 19 January 2021, AIP Advances.
DOI: 10.1063/5.0029781

By Rana

Leave a Reply

Your email address will not be published. Required fields are marked *