Spin Currents in a Bilayer Graphene/CrSBr Heterostructure

Simplified schematic image of the studied system, exhibiting electrical and thermal era of spin currents in a bilayer graphene/CrSBr heterostructure. The magnetic Co electrodes are used to find out the diploma of proximity induced spin polarization within the bilayer graphene, the place the magnetization of the outer-most layer of CrSBr (MCSB) permits for greater conductivity of the spin-up electrons (pink arrows). Credit score: Talieh Ghiasi, College of Groningen

In spintronics, the magnetic second of electrons (spin) is used to switch and manipulate data. An ultra-compact 2D spin-logic circuitry may very well be constructed from 2D supplies that may transport the spin data over lengthy distances and likewise present sturdy spin-polarization of cost present. Experiments by physicists on the College of Groningen (The Netherlands) and Colombia College (USA) recommend that magnetic graphene may be the final word selection for these 2D spin-logic gadgets because it effectively converts cost to spin present and may switch this sturdy spin-polarization over lengthy distances. This discovery will likely be revealed at this time (Could 6, 2021) in Nature Nanotechnology.

Spintronic gadgets are promising high-speed and energy-saving alternate options for the present electronics. These gadgets use the magnetic second of electrons so-called spins (‘up’ or ‘down’) to switch and retailer data. The continued cutting down of reminiscence know-how requires ever smaller spintronic gadgets and thus it seeks for atomically skinny supplies that may actively generate massive spin indicators and switch the spin data over micrometer-long distances.


For over a decade, graphene has been probably the most favorable 2D materials for the transport of spin data. Nonetheless, graphene can’t generate spin present by itself until its properties are appropriately modified. One solution to obtain that is to make it act as a magnetic materials. The magnetism would favor the passage of 1 kind of spin and thus create an imbalance within the variety of electrons with spin-up versus spin-down. In magnetic graphene, this may end in a extremely spin-polarized present.

Talieh Ghiasi and Alexey Kaverzin

First writer Talieh Ghiasi (proper) and second writer Alexey Kaverzin on the laboratory of Physics of Nanodevices, Zernike Institute for Superior Supplies. Credit score: College of Groningen

This concept had now been experimentally confirmed by the scientists within the Physics of Nanodevices group led by prof. Bart van Wees on the College of Groningen, Zernike institute for superior supplies. Once they introduced graphene in shut proximity to a 2D layered antiferromagnet, CrSBr, they might straight measure a big spin-polarization of present, generated by the magnetic graphene.


In standard graphene-based spintronic gadgets, ferromagnetic (cobalt) electrodes are used for injecting and detecting the spin sign into graphene. In distinction, in circuits constructed from magnetic graphene, the injection, transport, and detection of the spins all may be completed by the graphene itself, explains Talieh Ghiasi, first writer of the paper. ‘We detect an exceptionally massive spin-polarization of conductivity of 14% within the magnetic graphene that can be anticipated to be effectively tuneable by a transverse electrical discipline.’ This, along with the excellent cost and spin transport properties of graphene permits for the belief of all-graphene 2D spin-logic circuitries the place the magnetic graphene alone can inject, transport, and detect the spin data.

Furthermore, the unavoidable warmth dissipation that occurs in any digital circuitry is turned to a bonus in these spintronic gadgets. ‘We observe that the temperature gradient within the magnetic graphene as a result of Joule heating is transformed to spin present. This occurs by the spin-dependent Seebeck impact that can be noticed in graphene for the primary time in our experiments,’ says Ghiasi. The environment friendly electrical and thermal era of spin currents by magnetic graphene guarantees substantial advances each for the 2D spintronic and spin-caloritronic applied sciences.

Graphene Flagship

The spin transport in graphene, moreover, is extremely delicate to the magnetic conduct of the outer-most layer of the neighboring antiferromagnet. This means that such spin transport measurements allow the read-out of the magnetization of a single atomic layer. Thus, the magnetic graphene-based gadgets not solely handle probably the most technologically related points of magnetism in graphene for the 2D reminiscence and sensory techniques but in addition present additional perception into the physics of magnetism.

The long run implications of those outcomes will likely be investigated within the context of the EU Graphene Flagship, which works in the direction of new functions of graphene and 2D supplies.

Reference: “Electrical and Thermal Era of Spin Currents by Magnetic Bilayer Graphene” by T.S. Ghiasi, A.A. Kaverzin, A.H. Dismukes, D.Ok. de Wal, X. Roy and B. J. van Wees, 6 Could 2021, Nature Nanotechnology.
DOI: 10.1038/s41565-021-00887-3

By Rana

Leave a Reply

Your email address will not be published. Required fields are marked *